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Abstract—Chiral trans-anti-trans-dicyclohexano-18-crown-6 isomers are synthesized via a lipase-catalyzed reaction. The solid-
state structure of the (S)-enantiomer is determined and compared with those reported for 18-crown-6 and trans-syn-trans-dicyclo-
hexano-18-crown-6. © 2002 Elsevier Science Ltd. All rights reserved.

Since Pedersen’s first synthesis paper,1 crown ether
compounds have been widely used for the complexation
and separation of metal ions, host–guest chemistry and
phase-transfer catalysis.2,3 From such research, it is
well-understood that the complexation properties of
crown ethers are controlled by several structural fac-
tors, such as the ring size, number of donor atoms and
stereochemistry. Dicyclohexano-18-crown-6 (DC18C6)
is a well-known crown ether that can exist as five
stereoisomers based on the fusion of the cyclohexane
rings (cis or trans) and the relationships of the two
cyclohexane ring (syn or anti ). In addition, the trans-
anti-trans- and cis-trans-DC18C6 (isomers D and E,
respectively) can each exist as a pair of enantiomers.
Since cis-syn-cis- and cis-anti-cis-DC18C6 (isomers A
and B, respectively) are easily obtained by hydrogena-

tion of dibenzo-18-crown-6 and separation of the iso-
mers,1,4 their complexation and separation behaviors
are well established. However, systematic studies of all
five isomers have been rarely reported.5 In large part,
this is due to the difficulty of synthesis and purification,
especially for isomer D.

Synthesis of chiral isomer D was first reported by
Hayward and co-workers.6 Huber and Dietz also pre-
pared chiral isomer D in their syntheses of isomers C
and D.7 In both cases, chiral trans-1,2-cyclohexanediol
was employed as the starting material.

Recently, we reported improved stereospecific syntheses
of isomers C and D.8 Herein we describe the synthesis
of isomer D as the pure enantiomers via an enzymatic
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Scheme 1. Synthesis of chiral trans-anti-trans-DC18C6 isomers via an enzymatic reaction.

reaction and the solid-state structure of the (S)-
enantiomer.

The synthetic route to chiral isomer D is shown in
Scheme 1. Racemic trans-2-benzyloxycyclohexanol9 (7),
which was obtained by reaction of cyclohexene oxide
(6) and benzyl alcohol with a catalytic amount of NaH,
was separated into enantiomers by lipase-catalyzed
acetylation.10,11 In the enzymatic reaction, only the
(R)-enantiomer was acetylated. (R)-Acetate 8r and (S)-
alcohol 7s were readily separated by column chro-
matography on silica gel. (R)-Acetate 8r was
hydrolyzed to (R)-alcohol 7r by reaction with K2CO3 in
methanol. The optical purity of each enantiomer was
determined as >95% ee with a chiral NMR shift
reagent. Synthesis of chiral isomer D from 7r and 7s
followed a published procedure.7 Coupling of 2 equiv.
of chiral trans-2-benzyloxy-1-cyclohexanol (7r or 7s)
and 1 equiv. of di(ethylene glycol) ditosylate (9) with
NaH gave the corresponding dibenzyl ether 10r or
10s.12 Catalytic hydrogenolysis of the dibenzyl ether
gave the chiral diol 11r or 11s.13 Chiral isomer D (4r
and 4s) was obtained by cyclization of the diol and
di(ethylene glycol) ditosylate.14

The crystal structure of (S)-isomer D (4s) was deter-
mined.15 The atomic coordinates are presented in Table
1. Fig. 1 shows an ORTEP drawing16 of 4s. One
ethylene linkage (C1�C2) was disordered. Four oxygen
atoms are oriented toward one face of the crown ether
cavity.

Fig. 2 provides a comparison of the ring skeletons of
(S)-isomer D (4s) with those of reported isomer C (3)
and 18-crown-6. Previously, we noted that the ring
skeletons of isomer C and 18-crown-6 are very similar.8

However, that of isomer D is different from those of
isomer C and 18-crown-6.8,17 While 18-crown-6 and
isomer C are relatively flat molecules with oxygen
atoms alternating above and below a mean plane by ca.
0.3 A� , isomer D is much more distorted and unsymmet-
rical. A mean plane through the six oxygen atoms
reveals positive deviations ranging from 0.06 to 0.37 A�

for four of these atoms and negative deviations of −0.15
to −0.37 A� for the remaining two oxygens. Whereas
18-crown-6 and isomer C direct only two ethylene
hydrogen atoms inward towards the cavity, six of these
hydrogen atoms in isomer D are pointed inward, or
directed up or down over the cavity. These differences
can be explained by comparison of torsion angles
(Table 2).18 The C�O�C�C torsion angles all exhibit
one anti and one distorted gauche torsion angle around
each oxygen atom. The disorder around O1 and O2

Table 1. Atomic coordinates and equivalent isotropic dis-
placement parameters for (S)-trans-anti-trans-DC18C6 (4s)

Atom x/a y/b z/c U(eq)a

−0.4331(5)O(1) −0.8843(3) 0.0131(1) 0.065(1)
0.078(1)−0.0555(2)−0.6424(4)−0.4258(4)O(2)

−0.3612(3) −0.4797(3)O(3) −0.1970(1) 0.052(1)
−0.2007(3) −0.6251(3)O(4) −0.2887(1) 0.040(1)
−0.2419(3) −0.8741(3)O(5) −0.2196(1) 0.036(1)

−1.0376(3) −0.0969(1)O(6) 0.041(1)−0.4242(3)
−0.8105(8) −0.0142(4)C(1) 0.040(2)−0.5702(8)

0.042(2)−0.0092(3)−0.6648(8)C(2) −0.5340(1)
−0.5108(1)C(1A) −0.7786(9) 0.0226(4) 0.048(2)

C(2A) 0.038(2)−0.0370(3)−0.7261(8)−0.5581(8)
−0.01112(2)−0.5866(4) 0.045(1)−0.4617(5)C(3)

−0.3259(4)C(4) −0.5463(4) −0.01428(2) 0.038(1)
−0.2400(4) −0.4253(4)C(5) −0.2299(2) 0.041(1)

C(6) −0.2558(5) −0.2753(5) −0.02324(2) 0.052(1)
0.057(1)−0.02680(2)−0.2123(5)C(7) −0.1325(5)

−0.1201(5) −0.2719(4)C(8) −0.03308(2) 0.054(1)
C(9) −0.1074(4) −0.4227(4) −0.03284(2) 0.043(1)
C(10) −0.4856(3)−0.2297(4) −0.02928(2) 0.033(1)

−0.3227(4) −0.7089(4)C(11) −0.02943(2) 0.041(1)
C(12) −0.2739(4) −0.8483(4) −0.02828(2) 0.038(1)
C(13) −0.3601(4) −0.9265(4) −0.01871(2) 0.032(1)

−0.3098(4) −0.9656(4)C(14) −0.01241(2) 0.036(1)
−0.0379(2)−1.0919(4)−0.3935(4)C(15) 0.035(1)

−0.4331(5)C(16) 0.047(1)−1.2378(4) −0.0383(2)
C(17) −1.3030(5)−0.4101(6) 0.0241(2) 0.056(1)

−0.4883(5) −1.2287(4)C(18) 0.0745(2) 0.047(1)
C(19) −0.4475(4) −1.0825(4) 0.0738(2) 0.040(1)

0.0119(2)−0.4754(4) −1.0201(4) 0.038(1)C(20)

a U(eq) is defined as one third of the trace of the orthogonalized Uij

tensor.
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Figure 1. Solid-state structure of (S)-trans-anti-trans-
DC18C6 (4s).

Table 2. Comparison of torsion angles (°) for three crown
ethers

18-Crown-6 Isomer C Isomer DTorsion angle

65.1 72.269.4O(1)�C(1)�C(2)�O(2)
O(1)�C(1A)�C(2A)�O(2) −84.2

100.3−177.4C(1)�C(2)�O(2)�C(3) −175.2
−179.0C(1A)�C(2A)�O(2)�C(3)

166.6175.6C(2)�O(2)�C(3)�C(4) −172.4
C(2A)�O(2)�C(3)�C(4) −159.6
O(2)�C(3)�C(4)�O(3) −173.7 −174.5 −175.2

−165.4−169.2 175.2C(3)�C(4)�O(3)�C(5)
C(4)�O(3)�C(5)�C(10) −80.3 −77.0 119.2

−64.368.8O(3)�C(5)�C(10)�O(4) 74.7
−154.9 98.0−158.8C(5)�C(10)�O(4)�C(11)

165.6 −174.5165.6C(10)�O(4)�C(11)�C(12)
O(4)�C(11)�C(12)�O(5) −65.1a −69.4a 72.8

93.2177.4175.2C(11)�C(12)�O(5)�C(13)
C(12)�O(5)�C(13)�C(14) 172.4 −175.6 173.0
O(5)�C(13)�C(14)�O(6) 173.7 174.5 −170.3

165.4 175.8169.2C(13)�C(14)�O(6)�C(15)
80.3 109.277.0C(14)�O(6)�C(15)�C(20)

−61.4−68.8O(6)�C(15)�C(20)�O(1) −74.7
C(15)�C(20)�O(1)�C(1) 154.9 158.8 108.0
C(15)�C(20)�O(1)�C(1A) 142.0

−165.6 175.8−165.6C(20)�O(1)�C(1)�C(2)
C(20)�O(1)�C(1A)�C(2A) −93.6

a The remaining torsion angles in the list are generated by a crystallo-
graphic center of symmetry.

Figure 2. Stick drawings of: (a) each conformer of (S)-trans-
anti-trans-DC18C6 (4s); (b) trans-syn-trans-DC18C6 (3); and
18-crown-6.
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